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Introduction. Alexander Shpilkin1 has discovered on the web a derivation of the
differential equations satisfied by the Chebyshev polynomials Tn(x) that is—by
any measure, but especially when compared with that obtained by my general
recursive method2—remarkable for its swift efficiency. Shpilkin’s argument
proceeds, however, from a description of Tn(x) that cannot be found in any of
the standard sources (Abramowitz & Stegun, Spanier & Oldham). My primary
objective here will be to trace Shpilkin’s argument to its more familiar roots.
That will be accomplished by appeal to the resources latent in a factorization
scheme (described below) borrowed from Ray Mayer’s approach to a similar
problem (derivation of the the differential equations satisfied by certain “Sebbar
polynomials). I will look then to light that the scheme can shed on properties
of some other polynomials, and to some related matters.

The factorization scheme. Eleven of the generators of orthogonal polynomials
listed in Abramowitz & Stegun’s Table 22.9 contain the construction

R =
√

1 − 2xh + h2

The scheme proceeds from the observation that

1 − 2xh + h2 = (α− h)(β − h) (1)

entails
αβ = 1

α + β = 2x
(2)

of which the solution (unique to within permutation) is

1 Private communication, 29 December 2017.
2 “Extracting differential equations from the generators of polynomials,”

(November 2017, pages 5–7.



2 Factored generating functions

α(x) = x +
√

x2 − 1

β(x) = x −
√

x2 − 1
(3)

Dividion of (1) by αβ = 1 gives

1 − 2xh + h2 = (1 − h/α)(1 − h/β) (4.1)
= (1 − h/α)(1 − αh) (4.2)

Chebyshev polynomials. The Chebyshev polynomials of the first kind Tn(x) are
generated by

G(x, h) = 1 − xh
1 − 2xh + h2

(5)

which gives

T0(x) = 1
T1(x) = x

T2(x) = −1 + 2x2

T3(x) = −3x + 4x3

T4(x) = 1 − 8x2 + 8x4

T5(x) = 5x − 20x3 + 16x5

T6(x) = −1 + 18x2 − 48x4 + 32x6

T7(x) = −7x + 56x3 − 112x5 + 64x7

T8(x) = 1 − 32x2 + 160x4 − 256x6 + 128x8






(6)

I have carried that display far enough to expose its many patterns, which I will
however not linger to discuss. I look instead to reformulation of the generating
function and to the production of direct descriptions of the polynomials.

We notice that

1
1 − h/α

+ 1
1 − h/β

= 2αβ − (α + β)h
(α− h)(β − h)

= 2 − 2xh
1 − 2xh + h2

= 2G(x, h)

so we have

G(x, h) =
∞∑

n=0

Tn(x)hn

= 1
2

{
(1 − h/α)–1 + (1 − h/β)–1

}

= 1
2

∞∑

n=0

( 1
αn

+ 1
βn

)
hn (7)

giving

Tn(x) = 1
2 (α−n + β−n)

= 1
2 (α+n + β+n) by αβ = 1

= 1
2 (α+n + α−n) (8)
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From these pretty results it is but a quick step to Shpilkin’s point of
departure, for from

eiω = cosω + i
√

1 − cos2 ω

one has the identity

ω = −i log(cosω +
√

cos2 ω − 1)

which (set cosω = x) can be written

ω = arccos x = −i log(x +
√

x2 − 1) = −i logα

Therefore
cos nω = 1

2 (einω + e−inω)

= 1
2 (en log α + e−n log α)

= 1
2 (αn + α−n)

which by (8) gives
Tn(x) = cos(n arccos x) (9)

It is from (9)—which, as I have mentioned, does not appear in Spanier &
Oldham’s Atlas of Functions or other sources immediately available to me—
that Shpilkin extracts his elegantly swift derivation of the differential equations
satisfied by the polynomials Tn(x). Trivially,

d2

dy2 cos ny + n2 cos ny = 0

which when y = y(x) becomes

(
dx
dy

d
dx

)2 cos ny(x) + n2 cos ny(x) = 0

In the case at hand y(x) = arccos x so x(y) = cos y, dx
dy = − sin y = −

√
1 − x2

and we have (√
1 − x2 d

dx

)2
Tn(x) + n2Tn(x) = 0

which by
(√

1 − x2 d
dx

)2 = (1 − x2) d2

dx2 − x d
dx gives

(1 − x2)Tn
′′ − xTn

′ + n2Tn = 0 (10)

We note in passing that the Tn-generator2

G(x, h) = 1 − 1
2 log(1 − 2xh + h2)

listed by Abramowitz & Stegun is distinct from the G(x, h) of (5). But
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G(x, h) = 1 − 1
2 log[(1 − h/α)(1 − h/β)]

= 1 − 1
2 log(1 − h/α) − 1

2 log(1 − h/β)

= 1 + 1
2

∞∑

n=1

1
n (h/α)n + 1

2

∞∑

n=1

1
n (h/β)n

= 1 + 1
2

∞∑

n=1

1
n

( 1
αn

+ 1
βn

)
hn

= T0(x) +
∞∑

n=1

1
nTn(x)hn

so the difference is mainly cosmetic.

Legendre polynomials. The Lengendre polynomials are generated by

H(x, h) = 1√
1 − 2xh + h2

(11)

which gives

P0(x) = 1
P1(x) = x

P2(x) = 1
2 (−1 + 3x2)

P3(x) = 1
2 (−3x + 5x3)

P4(x) = 1
8 (3 − 30x2 + 35x4)

P5(x) = 1
8 (15x − 70x3 + 63x5)

P6(x) = 1
16 (−5 + 105x2 − 315x4 + 231x6)

P7(x) = 1
16 (−35x + 315x3 − 693x5 + 429x7)






(12)

in which again many patterns are evident, but are of no present concern. The
familiar factorization provides

H(x, h) = 1√
(1 − h/α)(1 − h/β)

= 1√
(1 − h/α)(1 − αh)

(13)

We find it more efficient to work from the latter, since that avoids having to
draw after the fact upon β = α–1. The function (13) lacks the neat structure of
(7), has not the form of an explicit expansion in powers of h so does not provide
ready-made descriptions of the polynomials Pn(x); it is byMathematica -assisted
calculation that we obtain this formulation of (12):
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P0(x) = 1

P1(x) = 1
2α (1 + α2)

P2(x) = 1
8α2 (3 + 2α2 + 3α4)

P3(x) = 1
16α3 (5 + 3α2 + 3α4 + 5α6)

P4(x) = 1
128α4 (35 + 20α2 + 18α4 + 20α6 + 35α8)

P5(x) = 1
256α5 (63 + 35α2 + 30α4 + 30α6 + 35α8 + 63α10)






(12)

Which are not so useless as they may—with their attractive symmetry—appear.
For making use again of ω = arccos x = −i logα we have

α = eiω with cosω = x

and with the assistance of Mathematica’s ExpToTrig command obtain
P0(x) = 1
P1(x) = cosω
P2(x) = 1

4 (1 + 3 cos 2ω)
P3(x) = 1

8 (3 cosω + 5 cos 3ω)
P4(x) = 1

64 (9 + 20 cos 2ω + 35 cos 4ω)
P5(x) = 1

128 (30 cosω + 35 cos 3ω + 63 cos 5ω)






(13)

which are of use in applications, particularly to the applied theory of spherical
harmonics.

The results developed above provide no formula comparable to (9), so
provide no basis on which to construct a similarly swift derivation of Legendre’s
differential equation

(1 − x2)Pn
′′ − 2xPn

′ + n(n + 1)Pn = 0

In this respect they demonstrate a respect in which the Chebyshev polynomials
are special, and the utility of my general recursive method.2

Comparison with Mayer’s method. Ahmed Sebbar’s polynomials (of what I call
the 1st kind3) Sn(x) arise in the usual way from a generating function

F (x, h) = log(1 − 3xh − h3) (14)

into which h enters cubically. The polynomials have been demonstrated4 to
satisfy linear differential equations of third order

(4x3 + 1)Sn
′′′ + 18x2Sn

′′ − (3n2 + 3n − 10)xSn
′ − n2(n + 3)Sn = 0 (15)

3 Sebbar has interest in four distinct populations of polynomials, with closely
related cubic generators.

4 See “Ray Mayer’s reconstruction of Ahmed Sebbar’s DE” (a Mathematica
notebook in PDF format, November 2017) and “Extracting differential
equations. . . ,”2 pages 9–11.
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Mayer’s approach to the derivation of that equation makes essential use of a
generalized factorization scheme. He writes

1 − 3xh − h3 = (α− h)(β − h)(γ − h) (16)

Comparison of the expression on the left with the expansion of the exprssion
on the right gives

α + β + γ = 0
αβ + βγ + γα = 3x

αβγ = 1





(17)

where {α,β, γ }, the roots of 1− 3xh−h3 = 0 (unique to within permutations),
are solutions of (17). Those, as reported by Mathematica , are enormously
complex, but can with patience be shown to have the structure

α = ω1A
–1 + ω2

1Ax

β = ω2A
–1 + ω2

2Ax

γ = ω3A
–1 + ω2

3Ax





(18.1)

where {ω1,ω2,ω3} are cube roots of −1:

ω1 = −1

ω2 = e+iπ/3 = 1
2 (1 + i

√
3)

ω2 = e−iπ/3 = 1
2 (1 − i

√
3)

Equations (18.1) give

α + β + γ = 0
αβ + βγ + γα = 3x

αβγ = (A6x3 − 1)/A3

so to achieve (17) the function A(x) must be a solution of (A6x3 − 1)/A3 = 1,
which is to say: A = a1/3, where

a(x) = 1 ±
√

1 + 4x3

2x3

is a solution of (a2x3 − 1)a = 1. Evidently there are six such A-functions, and
it is a matter of indifference which one we adopt; Ray Mayer elected4 to work
with

A = 21/3

(
− 1 +

√
1 + 4x3

)1/3
(18.2)

From (16) we by αβγ = 1 have

1 − 3xh − h3 = (1 − h/α)(1 − h/β)(1 − h/γ)

Returning with this result to (14), we have
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F (x, h) = log(1 − h/α) + log(1 − h/β) + log(1 − h/γ)

= −
∞∑

n=1

1
n

( 1
αn

+ 1
βn

+ 1
γn

)
hn

=
∞∑

n=1

Sn(x)hn ≡ −
∞∑

n=1

1
n

Mn(x)hn (19)

This construction of Sn(x) bears a striking resemblance to (7), and more
particularly to a formula that appears on page 4. We expect such formulæ
to arise whenever

generating function = log(1 + · · · ± hp)
= log[(α1 − h)(α2 − h) · · · (αp − h)]

where · · · signifies a polynomial of the form
∑p−1

k=1 ck(x)hk.

It was from (19) that Mayer worked to obtain the differential equations
satisfied by the polynomials Mn(x), whence by Sn(x). His argument was made
computationally heavy by the complexity (18) of the functions {α,β, γ }. It was
the relative simplicity (and, indeed, the special structure (3)) of the functions
{α,β } that made it possible to proceed from (8) by a natural change of variable
to the elegant formula (9), from which the associated differential equations
followed swiftly. The question arises: Can one in the present context construct
an analog of (9) from which Sebbar’s DE can be obtained with similar swiftness?

I do not know the answer, am presently inclined to think it is “no.” But
record one possibly relevant thought. The argument presented on page 3 makes
essential use of a property

d2

dx2 cos nx = −n2 cos nx

of the real-valued function

cos x = eix + e−ix

2
= e(−1)1/2x + e(−1)−1/2x

2

and its inverse. One might therefore expect in the present context to have need
of the real-valued function

f(x) = e(−1)1/3x + e(−1)−1/3x

2
= ex/2 cos( 1

2

√
3x)

which satisfies
d3

dx3 f(nx) = −n3f(nx)

As so also do
g(nx) = enx/2 sin( 1

2

√
3nx)

h(nx) = e−nx
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The function h(nx) is monotonic, so possesses a functional inverse; indeed,

y = h(nx) =⇒ x = log(1/yn)

But the growth of f(nx) and g(nx) is oscillatory (= not monotonic) so their
functional inverses are multivalued, so defined only locally. This train of thought
appears to take us no closer to the construction of a Sebbar analog of (9).

Construction of polynomials that satisfy high-order differential equations. The
classic orthogonal polynomials all satisfy linear differential equations of second
order. It is in this light somewhat surprising that Sebbar’s polynomials Sn(x)
satisfy equations of third order. Alexander Shpilkin was led therefore to wonder1
whether one can construct polynomials that satisfy DEs of arbitrarily great
order.5 I approach the question by explaining how it comes about that Sebbar’s
polynomials satisfy DEs of 3rd order. I will allow myself to report as bald
assertions facts that were obtained by Mathematica -based experimentation.

Mathematica reports that the general solution of Sebbar’s DE (15) is a
linear combination of the following functions:

H0(n) = x0 · 3F2

({
1
2 + n

6 ,−n
3 , n

6

}
,
{

1
3 , 2

3

}
,−4x3

)

H1(n) = x1 · 3F2

({
1
3 − n

3 , 1
3 + n

6 , 5
6 + n

6

}
,
{

2
3 , 4

3

}
,−4x3

)

H2(n) = x2 · 3F2

({
2
3 − n

3 , 2
3 + n

6 , 7
6 + n

6

}
,
{

4
3 , 5

3

}
,−4x3

)





(20)

where the generalized hypergeometric functions are defined

3F2

({
a1, a2, a3

}
,
{
b1, b2

}
, y

)
=

∞∑

k=0

1
k!

[a1, k][a2, k][a3, k]
[b1, k][b2, k]

yk (21)

and where the expressions [•, •] are Pochhammer symbols (ascending factorials),
the meaning of which6 is illustrated by

[a, 5] = a(1 + a)(2 + a)(3 + a)(4 + a)

Clearly

[0, k] = 0 : k ! 1
[−1, k] = 0 : k ! 2

...
[−n, k] = 0 : k ! n + 1 (n a positive integer)






(22)

5 If P (x) satisfies a DE of order n then it satisfies also the DEs of order m > n
that are produced by m-fold differentiation of the original DE. Our concern here,
therefore, is with DEs of arbitrarily great least/minimal order n.

6 See Spanier & Oldham, Chapter 18. [a, 0] = 1 by definition.
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to truncate; i.e., to reduce to a polynomial.
I show how this works in the production of Sebbar polynomials. Look to

the parameter sets that appear in (20):

h0(n) =
[{

1
2 + n

6 ,−n
3 , n

6

}
,
{

1
3 , 2

3

}]

h1(n) =
[{

1
3 − n

3 , 1
3 + n

6 , 5
6 + n

6

}
,
{

2
3 , 4

3

}]

h2(n) =
[{

2
3 − n

3 , 2
3 + n

6 , 7
6 + n

6

}
,
{

4
3 , 5

3

}]

We find
h0(0) =

[{
•, 0, 0

}
,
{
•, •

}]

h1(0) =
[{
•, •, •

}
,
{
•, •

}]

h2(0) =
[{
•, •, •

}
,
{
•, •

}]

h0(1) =
[{
•, •, •

}
,
{
•, •

}]

h1(1) =
[{

0, •, •
}
,
{
•, •

}]

h2(1) =
[{
•, •, •

}
,
{
•, •

}]

h0(2) =
[{
•, •, •

}
,
{
•, •

}]

h1(2) =
[{
•, •, •

}
,
{
•, •

}]

h2(2) =
[{

0, •, •
}
,
{
•, •

}]

h0(3) =
[{
•,−1, •

}
,
{
•, •

}]

h1(3) =
[{
•, •, •

}
,
{
•, •

}]

h2(3) =
[{
•, •, •

}
,
{
•, •

}]

h0(4) =
[{
•, •, •

}
,
{
•, •

}]

h1(4) =
[{

− 1, •, •
}
,
{
•, •

}]

h2(4) =
[{
•, •, •

}
,
{
•, •

}]

h0(5) =
[{
•, •, •

}
,
{
•, •

}]

h1(5) =
[{
•, •, •

}
,
{
•, •

}]

h2(5) =
[{

− 1, •, •
}
,
{
•, •

}]

The pattern continues, with −2 replacing −1, etc. We conclude that

H0(0) H0(3) H0(6) . . .
H1(1) H1(4) H1(7) . . .
H2(2) H2(5) H2(8) . . .

are polynomials, and find that they are (to within numerical factors) precisely
the Sebbar polynomials

S0(x) S3(x) S6(x) . . .
S1(x) S4(x) S7(x) . . .
S2(x) S5(x) S8(x) . . .
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Generalized hypergeometric functions of the form (21) are known to satisfy
third-order linear differential equations of the form

y(Y + a1)(Y + a2)(Y + a3)f(y) = Y (Y + b1 − 1)(Y + b2 − 1)f(y)

where the differential operator

Y = y d
dy = d

dy y − 1

and where the operators (Y + a1) and (Y + a2) are seen to commute:

(Y + a1)(Y + a2) = (Y + a2)(Y + a1) = Y 2 + (a1 + a2)Y + a1a2

Simple change-of-variable techniques permit one to construct the DE satisfied
by 3F2

({
a1, a2, a3

}
,
{
b1, b2

}
, g(x)

)
, and thus to recover Sebbar’s DE (15). The

extension to functions of the form pFq

({
a1, a2, . . . , ap

}
,
{
b1, b2, . . . bq

}
, g(x)

)
,

which we expect to satisfy DEs of a minimal order which is the greater of
{p, q + 1}, is straightforward.

The preceding discussion indicates how one might proceed to construct
polynomials that satisfy differential equations of arbitrarily great minimal
order. One might expect to play similar games with Meijer G-functions and
Fox H-functions, generalizations of the hypergeometric functions.


